

18th Annual Congress of the European Cardiac Arrhythmia Society

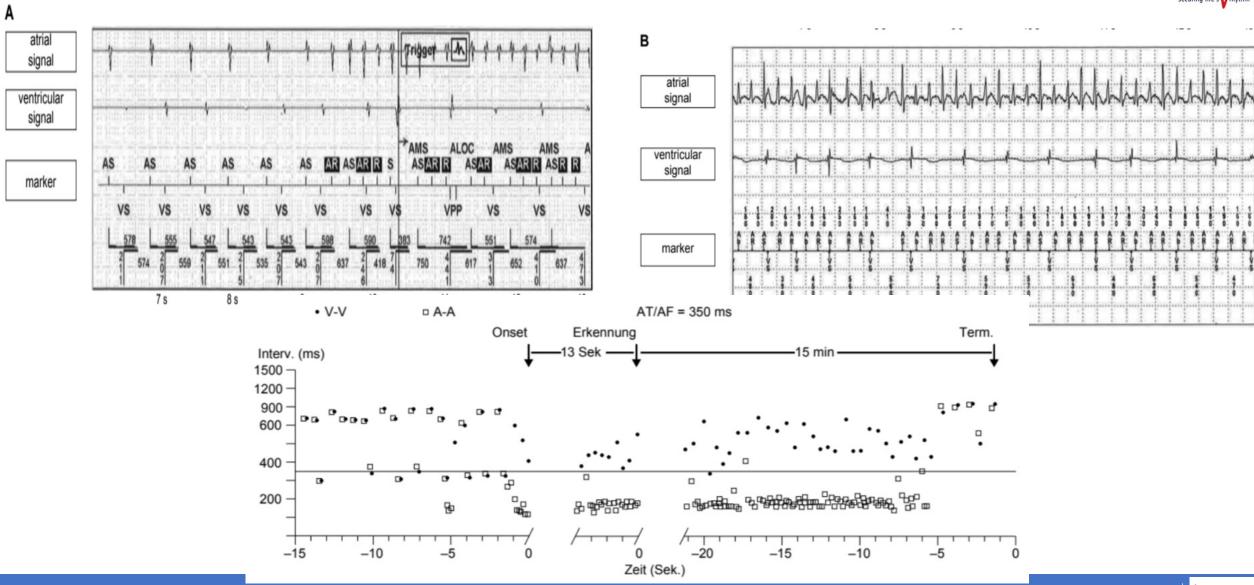
ECAS-WSA Joint Session 2 In Memory of Professor Massimo Santini

Device-Detected AF: OAC, Nothing, or Call a Friend... More Information??

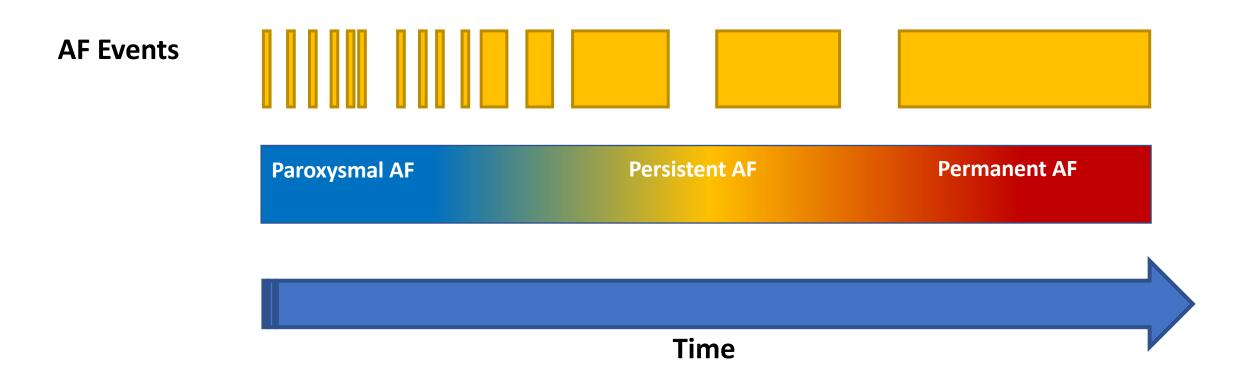
Carlos A Morillo, MD, FRCPC, FACC, FHRS, FESC
Professor Department of Cardiac Sciences, Libin Cardiovascular Institute
Division of Cardiology
Cumming School of Medicine, Calgary, Alberta
Senior Visiting Scientist, Molecular & Novel Arrhythmia Therapeutics

Centro Nacional de Investigaciones Cardiovasculares (CNIC) Carlos III

Madrid, Spain



DDAF



BACKGROUND

Atrial Fibrillation is a CHRONIC and PROGRESSIVE disease

AF is a Chronic Progressive Disease

Subclinical

Paroxysmal AF

Persistent AF

Permanent AF

₹

SCAF
Progression
8.8%/year

Heart Failure
Hospitalisation
HR 4.6

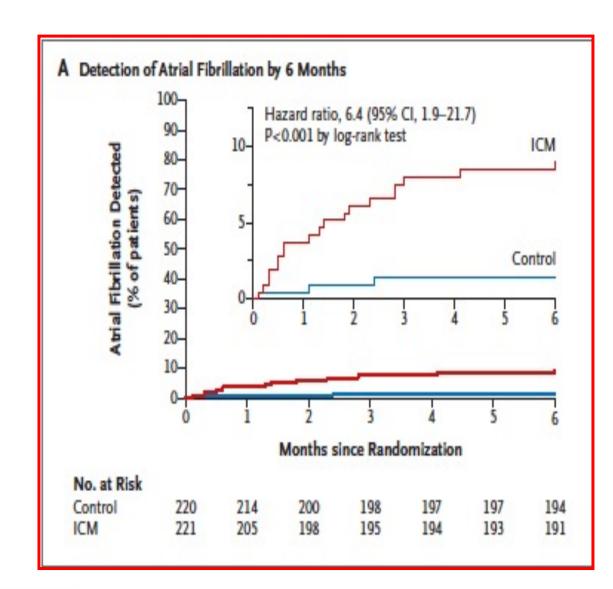
Clinical AF
Progression
~7%/year

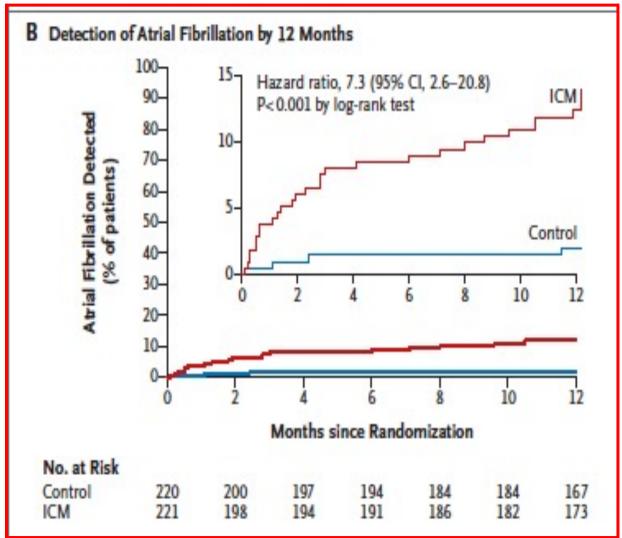
HR 1.2-1.3

Stroke

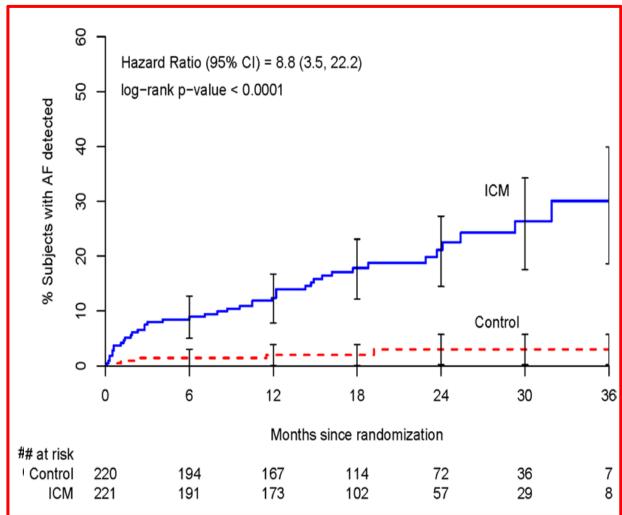
HR 1.4-1.6

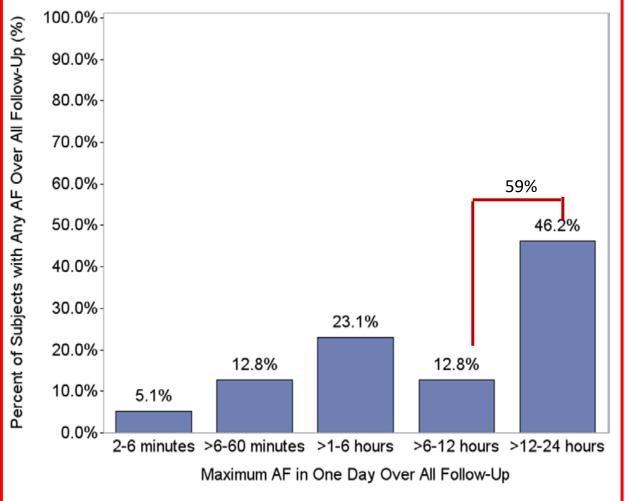
Heart Failure
Hospitalisation


HR >2



Detection Rates: Primary & Secondary Endpoints




Uncovering Atrial Fibrillation Beyond Short-Term Monitoring in Cryptogenic Stroke Patients

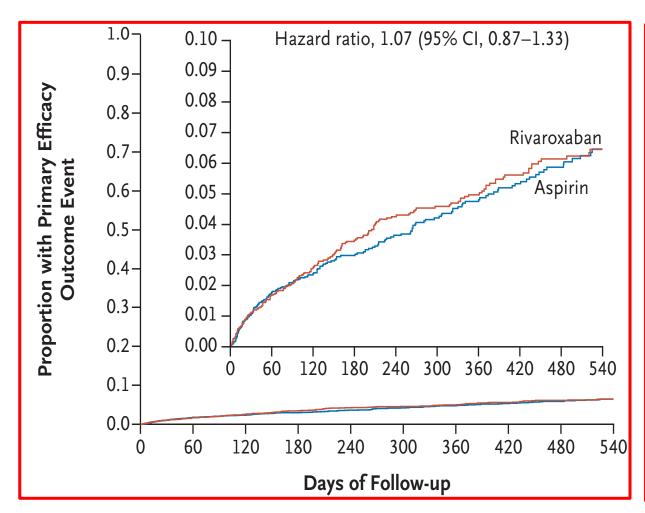
Three-Year Results From the Cryptogenic Stroke and Underlying Atrial Fibrillation Trial

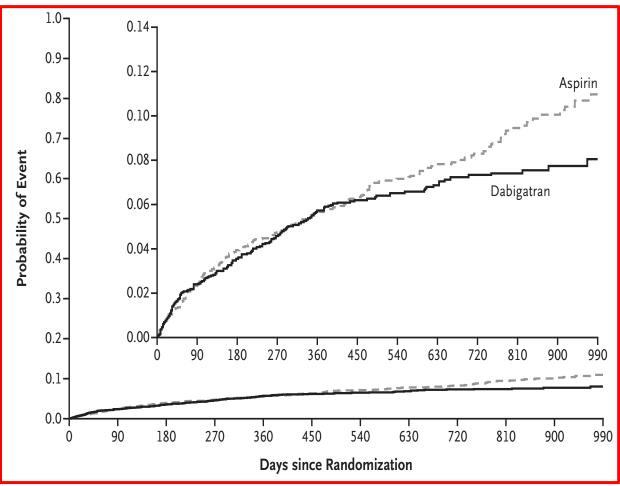
Johannes Brachmann, MD; Carlos A. Morillo, MD; Tommaso Sanna, MD; Vincenzo Di Lazzaro, MD; Hans-Christoph Diener, MD, PhD; Richard A. Bernstein, MD, PhD; Marylin Rymer, MD; Paul D. Ziegler, MS; Shufeng Liu, MS; Rod S. Passman, MD, MSCE

Predictors for atrial fibrillation detection after cryptogenic stroke

Results from CRYSTAL AF

Table 3 Mult	ivariable Cox model re	sults for atrial fibrillation of	detected by 1	2 or 36 months	
		12 mo		36 mo	
Variable		HR (95% CI)	p Value	HR (95% CI)	p Value
PAC (max in 24 h)	(n = 192)				
First quartile (0)		1.00 (reference)	0.0094	1.00 (reference)	0.0029
Second quartile	(>0-15.5)	0.57 (0.10-3.09)		0.39 (0.08-1.95)	
Third quartile (>	15.5-123.0)	1.61 (0.45-5.71)		1.76 (0.64-4.86)	
Fourth quartile (>123.0)	3.94 (1.30-11.97)		3.47 (1.38-8.70)	
Left atrial diamete	r (n = 115)				
First quartile (≤3	.45 cm)	1.00 (reference)	0.75	1.00 (reference)	0.44
Second quartile	(>3.45-3.90 cm)	0.94 (0.19-4.66)		2.10 (0.54-8.13)	
Third quartile (>	3.90-4.40 cm)	1.65 (0.41-6.61)		2.89 (0.81-10.39)	
Fourth quartile (>4.40 cm)	1.79 (0.40-7.99)		2.41 (0.58-10.10)	


ILR-detected subclinical AF in patients with cryptogenic stroke or TIA Europace (2019) 21, 1459–1467.



Study	Number of patients included	Mean age (years)	% male	Mean CHA ₂ DS ₂ - VASc score	Duration of follow-up	Definition of AHRE	Patients with AHRE	Time to first AHRE episode
Dion et al. (2010)	24	49 ± 13.6	62.5%	NR	Mean 14.5 months	Ventricular rate >165 b.p.m. for >32 complexes	1/24 (4.2%) with AF <30 s	NR
Cotter et al. (2013)	51	51.5 ± 13.9	54.9%	Median 3 (2-4)	Mean 229 ± 112 days in patients with- out AHRE	: AF >2 min	13/51 (25.5%)	Median 48 days (0–154)
Ritter et al. (2013)	60	Median 63 (48.5–72.0)	56.7%	Median 4 (3–5) with- out AHRE; me- dian 4 (3–5) with AHRE	Median 397 days (337–504) with- out AHRE; me- dian 312 days (242–397) with AHRE	AF >2 min	10/60 (16.7%)	Median 64 days (1–556)
Etgen et al. (2013)	22	60.0 without AF 65.8 with AF	; 43.8% without AF; 66.7% with AF	NR	12 months	AF ≥6 min	6/22 (27.3%)	Mean 152.8
Rojo-Martinez et al. (2013)	101	67	46.5%	NR	281 ± 212 days	AF >2 min	34/101 (33.7%)	Median 102 days (26–240)
SURPRISE (2014)	85	54.0 without AF 66.9 with AF	58.0% without AF; 44.4% with AF	Median 3 without AHRE; median 4 with AHRE	569 ± 310 days	AF >2 min	18/85 (20.7%)	109 ± 48 days
CRYSTAL AF (2014)	441 (208 ICM)	61.5 ± 11.3	63.5%	NR	12 months	AF >2 min	8.9% at 6 months; 12.4% at 12 months	Median 41 days (14–84)
CRYSTAL AF (2016)	48 (24 ICM)?	61.6 ± 11.4	?	NR	36 months	AF >2 min	30%	?
Poli et al. (2016)	74	66.4 ± 12.5	47%	Median 5 (4–6)	12 months	AF >2 min	21/74 (28.4%) at 6 months; 25/74 (33.8%) at 12 months	105 ± 135 days
Israel et al. (2017)	123	65.0 ± 9.4	60.2%	4.5 ± 1.3	12.7 ± 5.5 months	AF ≥2 min	29/123 (23.6%)	Average 3.6 months
Reinke et al. (2018)	105	64.4 ± 12.6	56.2%	Median 4 (3–6)	?	AF >2 min	19/105 (18%)	Median 217 days (72.5–338)
Pedersen et al. (2018)	105	Median 65.4 (27.1–80.8)	45.7%	Median 4 (2-7)	Median 381 days (371–390)	AF ≥2 min	7/105 (6.7%)	Median 21 days (5–146)

DOACS AND ESUS

N Engl J Med. 2018 Jun 7;378(23):2191-2201.

N Engl J Med 2019 May 16;380(20):1906-1917.

Apixaban to Prevent Recurrence After Cryptogenic Stroke in Patients With Atrial Cardiopathy The ARCADIA Randomized Clinical Trial

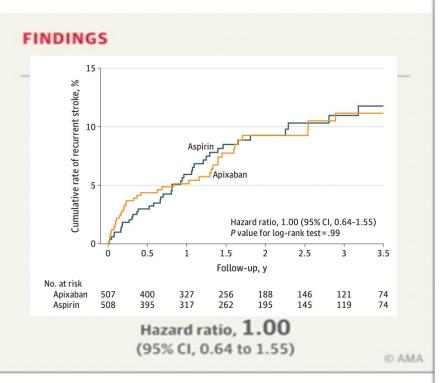
JAMA

QUESTION Is anticoagulation superior to antiplatelet therapy for prevention of recurrent stroke in patients with cryptogenic stroke and evidence of atrial cardiopathy?

CONCLUSION This randomized trial found that in patients with cryptogenic stroke and evidence of atrial cardiopathy without atrial fibrillation, apixaban did not significantly reduce recurrent stroke risk compared with aspirin.

551 Women 464 Men

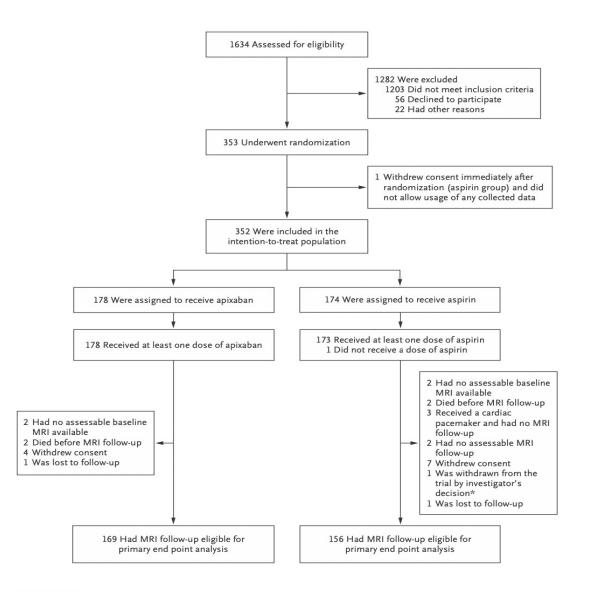
Adults ≥45 years with cryptogenic stroke and evidence of atrial cardiopathy

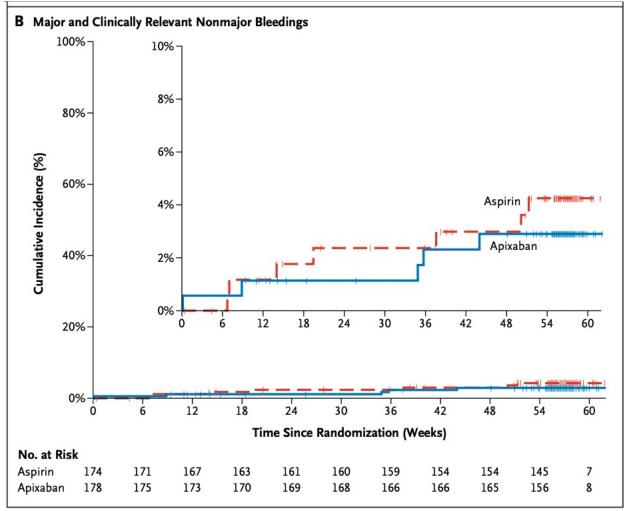

Mean age: 68 years

LOCATIONS

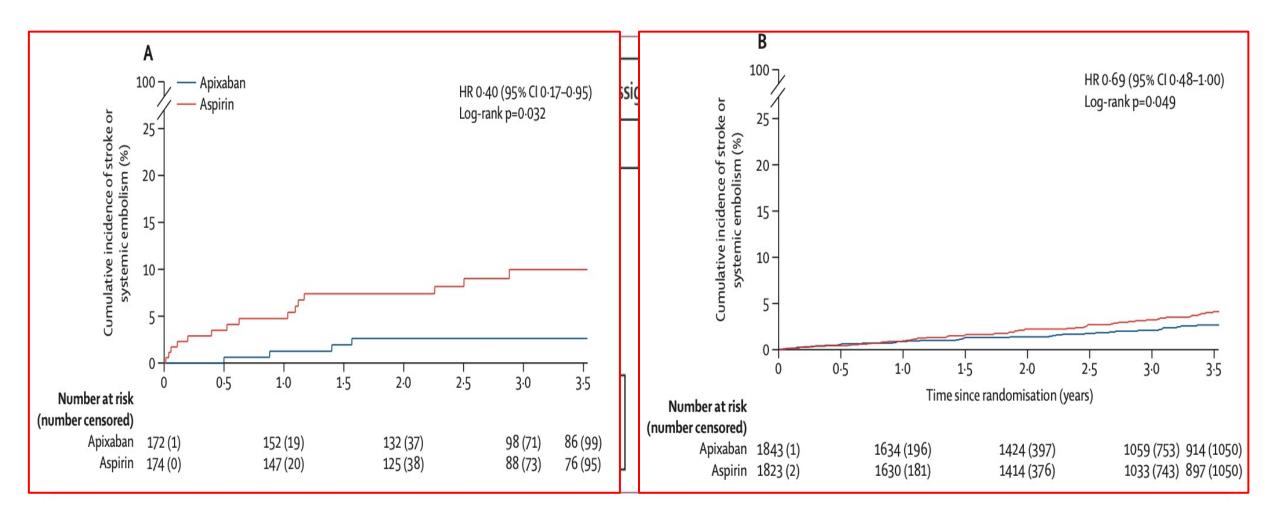
185 Sites in the US and Canada

TO15 Patients randomized 507 Apixaban Oral dose of apixaban, 5 mg or 2.5 mg, twice daily + aspirin placebo PRIMARY OUTCOME Recurrent stroke of any type


Kamel H, Longstreth WT Jr, Tirschwell DL, et al; ARCADIA Investigators. Apixaban to prevent recurrence after cryptogenic stroke in patients with atrial cardiopathy: the ARCADIA randomized clinical trial. JAMA. Published online February 7, 2024. doi:10.1001/jama.2023.27188



Apixaban versus Aspirin for Embolic Stroke of Undetermined Source (ATTICUS)



Apixaban versus aspirin for stroke prevention in people with subclinical AF and a history of stroke or TIA: subgroup analysis of the ARTESiA RCT

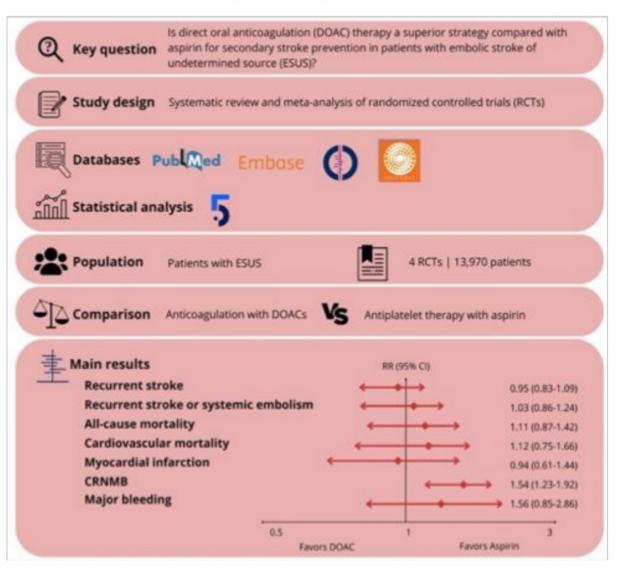
Effect of implantable loop recorder-based continuous rhythm monitoring on incident atrial fibrillation and stroke: An updated systematic review and meta-analysis of randomized controlled trials

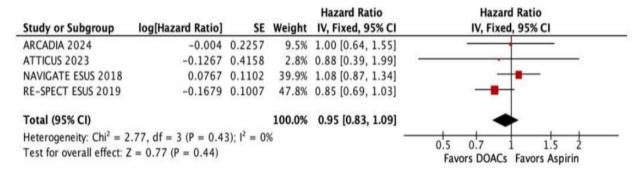
	ILR		non-	LR		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
CRYSTAL AF 2014	32	221	13	220	2.8%	2.45 [1.32, 4.54]	
LOOP 2021	445	1501	591	4503	92.4%	2.26 [2.03, 2.52]	
PER DIEM 2021	23	150	7	150	1.6%	3.29 [1.45, 7.42]	_
STROKE AF 2021	38	242	14	250	3.1%	2.80 [1.56, 5.04]	
Total (95% CI)		2114		5123	100.0%	2.29 [2.07, 2.55]	•
Total events	538		625				
Heterogeneity: Tau ² =	0.00; Ch	$ni^2 = 1.$	34, df =	3 (P =	0.72); I ² :	= 0%	0.01 0.1 1 10 100
Test for overall effect:	Z = 15.6	64 (P <	0.00001	.)			0.01 0.1 1 10 100 Favours non-ILR Favours ILR

Effect of implantable loop recorder–based continuous rhythm monitoring on incident atrial fibrillation and stroke: An updated systematic review and meta-analysis of randomized controlled trials

	ILR		non-l	LR		Risk Ratio	Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	M-H, Random, 95% CI
CRYSTAL AF 2014	15	221	19	220	13.4%	0.79 [0.41, 1.51]	
LOOP 2021	55	1501	217	4503	67.6%	0.76 [0.57, 1.02]	
PER DIEM 2021	5	150	8	150	4.7%	0.63 [0.21, 1.87]	
STROKE AF 2021	15	242	22	250	14.2%	0.70 [0.37, 1.33]	
Total (95% CI)		2114		5123	100.0%	0.75 [0.59, 0.95]	•
Total events	90		266				
Heterogeneity: Tau ² =	0.00; Ch	$ni^2=0.$	17, df =	3 (P =	$0.98); I^2 =$	= 0%	0.01 0.1 1 10 100
Test for overall effect:	Z = 2.38	8 (P = 0)	.02)				Favours ILR Favours non-ILR

	ILR		non-l	LR		Risk Ratio		Risk Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI		M-H, Random, 95% CI	
CRYSTAL AF 2014	15	221	19	220	23.2%	0.79 [0.41, 1.51]			
LOOP 2021	21	262	64	794	44.0%	0.99 [0.62, 1.60]		-	
PER DIEM 2021	5	150	8	150	8.2%	0.63 [0.21, 1.87]			
STROKE AF 2021	15	242	22	250	24.6%	0.70 [0.37, 1.33]			
Total (95% CI)		875		1414	100.0%	0.83 [0.61, 1.14]		•	
Total events	56		113						25-
Heterogeneity: Tau ² =	0.00; Ch	$ni^2 = 1.$	11, df =	3 (P =	0.78); I ²	= 0%	0.01	0.1 1 10 1	00
Test for overall effect:	Z = 1.15	P = 0	.25)				0.01	Favours ILR Favours non-ILR	00





DOACs vs Aspirin for Secondary Stroke Prevention in Patients with ESUS: An updated Meta-Analysis of RCTs

DOAC versus Aspirin in patients with ESUS

Study or Subgroup	log[Hazard Ratio]	SE	Weight	Hazard Ratio IV, Fixed, 95% CI	Hazard Ratio IV, Fixed, 95% CI
ARCADIA 2024	-0.0815	0.2276	17.5%	0.92 [0.59, 1.44]	
ATTICUS 2023	-0.2169	0.4106	5.4%	0.81 [0.36, 1.80]	-
NAVIGATE ESUS 2018	0.073	0.1083	77.2%	1.08 [0.87, 1.33]	-
Total (95% CI)			100.0%	1.03 [0.86, 1.24]	•
Heterogeneity: $Chi^2 = 0$	0.76, df = 2 (P = 0.6	_	05 07 15 1		
Test for overall effect: 2					0.5 0.7 1 1.5 2 Favors DOACs Favors Aspirin

Study or Subgroup	log[Hazard Ratio]	SE	Weight	Hazard Ratio IV, Fixed, 95% CI	Hazard Ratio IV, Fixed, 95% CI
ATTICUS 2023	-0.1267	0.4158	3.3%	0.88 [0.39, 1.99]	-
NAVIGATE ESUS 2018	0.0102	0.1127	45.3%	1.01 [0.81, 1.26]	-
RE-SPECT ESUS 2019	-0.1781	0.1059	51.3%	0.84 [0.68, 1.03]	-
Total (95% CI)			100.0%	0.91 [0.79, 1.06]	•
Heterogeneity: $Chi^2 = 1$	1.49, $df = 2$ ($P = 0.4$	7); $I^2 = 0$	%	_	0,5 0,7 1,15 1
Test for overall effect: 2					0.5 0.7 1 1.5 2 Favors DOACs Favors Aspirin

Device-detected AF

ECG-diagnosed AF

Time in

Sinus rhythm &

Atrial fibrillation

Risk factor and comorbidity management

Active rhythm and rate control therapy

Possibly anticoagulation

Anticoagulation (according to guideline-recommended risk scores)

(Shared decision-making

& considering stroke/bleeding risk)

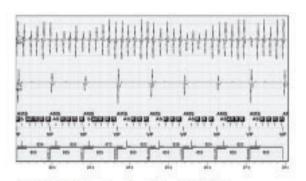
Europace (2024) **26**, euae070 https://doi.org/10.1093/europace/euae070

LIBIN

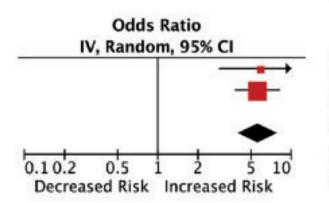
EHRA CONSENSUS DOCUMENT

Table 5 Summary of studies on atrial fibrillation detected by CIEDs and thromboembolic risk

Year	Trial	Number of patients	Duration of follow-up	Atrial rate cut-off	AF burden threshold	Hazard ratio for TE event	TE event rate (below vs. above AF burden threshold)
2003	Ancillary MOST ⁵	312	27 months (median)	>220 bpm	5 min	6.7 (P=0.020)	3.2% overall (1.3% vs. 5%)
2005	Italian AT500 Registry ¹⁸	725	22 months (median)	>174 bpm	24 h	3.1 (P=0.044)	1.2% annual rate
2009	Botto et al. ¹⁹	568	1 year (mean)	>174 bpm	CHADS ₂ +AF burden	n/a	2.5% overall (0.8% vs. 5%)
2009	TRENDS ²⁰	2486	1.4 years (mean)	>175 bpm	5.5 h	2.2 (P=0.060)	1.2% overall (1.1% vs. 2.4%)
2012	Home Monitor CRT ²²	560	370 days (median)	>180 bpm	3.8 h	9.4 (P=0.006)	2.0% overall
2012	ASSERT ⁷	2580	2.5 years (mean)	>190 bpm	6 min	2.5 (P=0.007)	(0.69% vs. 1.69%)
2014	SOS AF ²³	10016	2 years (median)	>175 bpm	1h	2.11 (P=0.008)	0.39% per year Overall

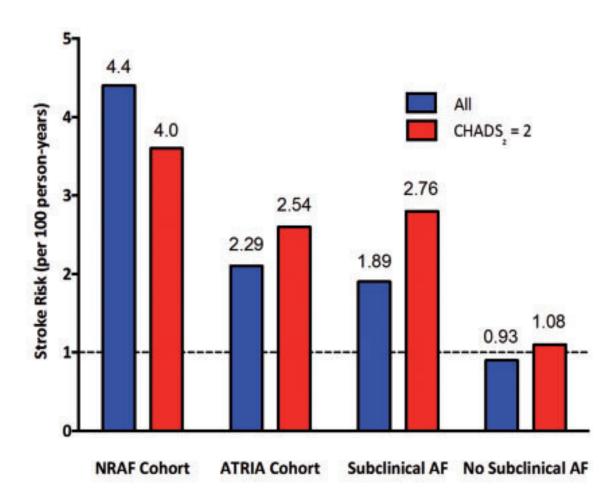


Study (Year)	Design (number)	Monitoring device	Population	Definition of AF	Prevalence of AF
EMBRACE ⁶⁸ (2014)	RCT (286 with monitor vs. 285 with Holter)	Braemar ER910AF event monitor with dry elec- trode belt; automatic AF detection vs. 24-hr Holter	Cryptogenic Stroke	≥30 s Detected within 90 days	Monitor: 16.1% Holter 3.2
Grond et al. ⁵⁶ (2013)	Cohort (1172)	72-hr Holter; Lifecard CF (Spacelabs)	Ischemic stroke or TIA	>30 s	4.3% after 72 hr 2.6% after 24 hr
Jabaudon et al. ⁶⁹ (2004)	Cohort (149)	7-day; <i>R</i> -test Evolution II, (Novacor)	Stroke or TIA	Not stated	ECG: 2.7% 24-hr Holter: 5% ELR: 5.7% ^b
Tung et al. ⁶⁴ (2014)	Cohort (1171)	14-day continuous ECG monitor (Ziopatch; iRhythm)	Stroke or TIA	>30 s	5%
ASSERT-III ⁶⁷ (2015)	Cohort (100)	30-day event monitor; automatic AF detection (Vitaphone 3100), wireless central moni- toring (m-Health Solutions)	Age≥80 years with hyper- tension and at least one additional AF risk factor)	≥6 min	15%
SCREEN-AF (NCT02392754) ⁷⁰	Ongoing Cohort (1800)	Two 14-day continuous ECG monitors (Ziopatch; iRhythm)	Age≥75 years without prior AF	≥5 min	Ongoing study



DDAF & Stroke Risk

AHRE detected in 13.9% patients annually


Patients with AHRE 5.7 fold more like to have clinical AF

PPV of AHRE

SJM- 83% >6min - 6 hour 97% >6 hour Medtronic- 95% Biotronik- 91%

AHRE duration associated with stroke risk

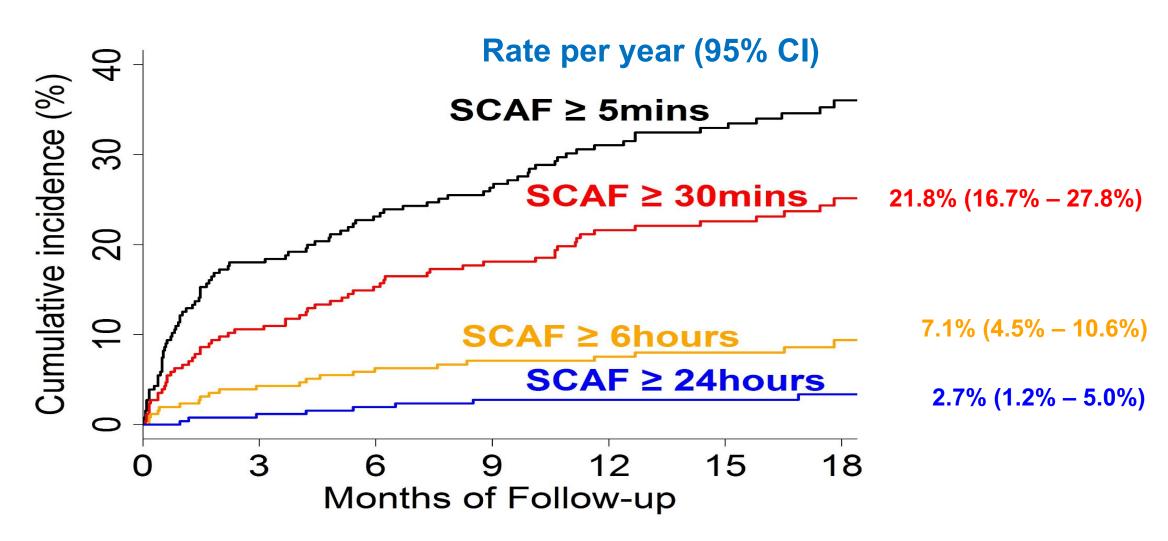
ASSERT- >6min episode (SJM) TRENDS->5.5hr daily burden (Medtronic) Home CARE and everesT trials-3.8hr daily burden (Biotronik)

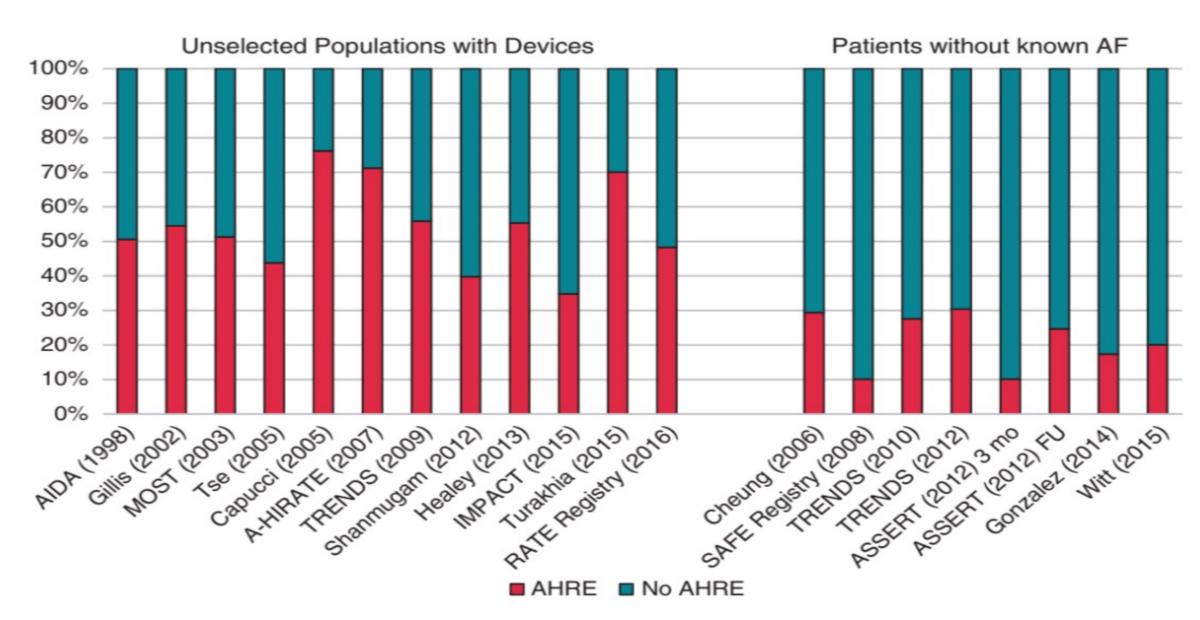
Subclinical AF and stroke risk

Duration of device-detected subclinical atrial fibrillation and occurrence of stroke in ASSERT Carlos A. Morillo², Anne H. Hobbelt¹, Michiel Rienstra¹, and Stuart J. Connolly²

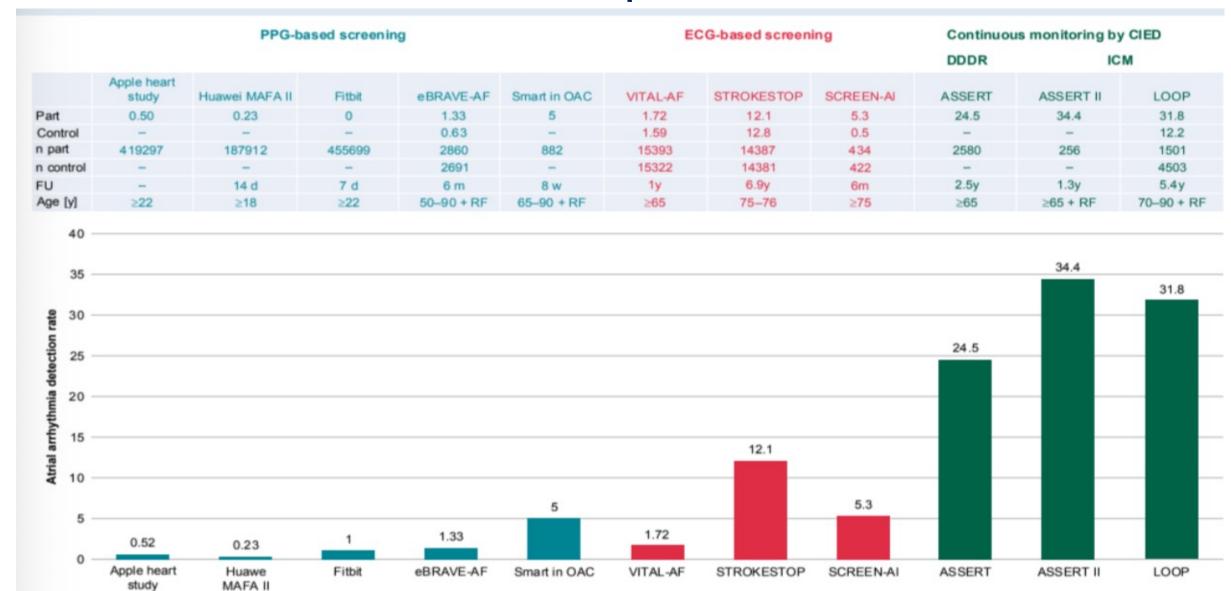
Isabelle C. Van Gelder¹*, Jeff S. Healey², Harry J.G.M. Crijns³, Jia Wang², Stefan H. Hohnloser⁴, Michael R. Gold⁵, Alessandro Capucci⁶, Chu-Pak Lau⁷,

Landmark analysis showing ischemic stroke/systemic embolism occurring after 1 year follow-up, according to **SCAF** durations between enrollment and 1 year follow-up^a


SCAF duration	Number	Event rate	Unadjusted		Adjusted ^b	
	events/patients	(%/year)	Hazard ratio (95% CI)	P-value	Hazard ratio (95% CI)	P-value
No SCAF	19/1811	0.54	1	_	1	-
>6 min-6 h	7/310	1.14	2.11 (0.89–5.02)	0.091	1.75 (0.69–4.44)	0.242
>6-24 h	2/105	0.95	1.79 (0.42–7.69)	0.433	1.85 (0.43–8.01)	0.413
>24 h	7/129	3.08	5.73 (2.41–13.64)	<0.001	5.37 (2.08–13.87)	<0.001



Incidence of ILR-detected subclinical AF in patients at high risk of stroke



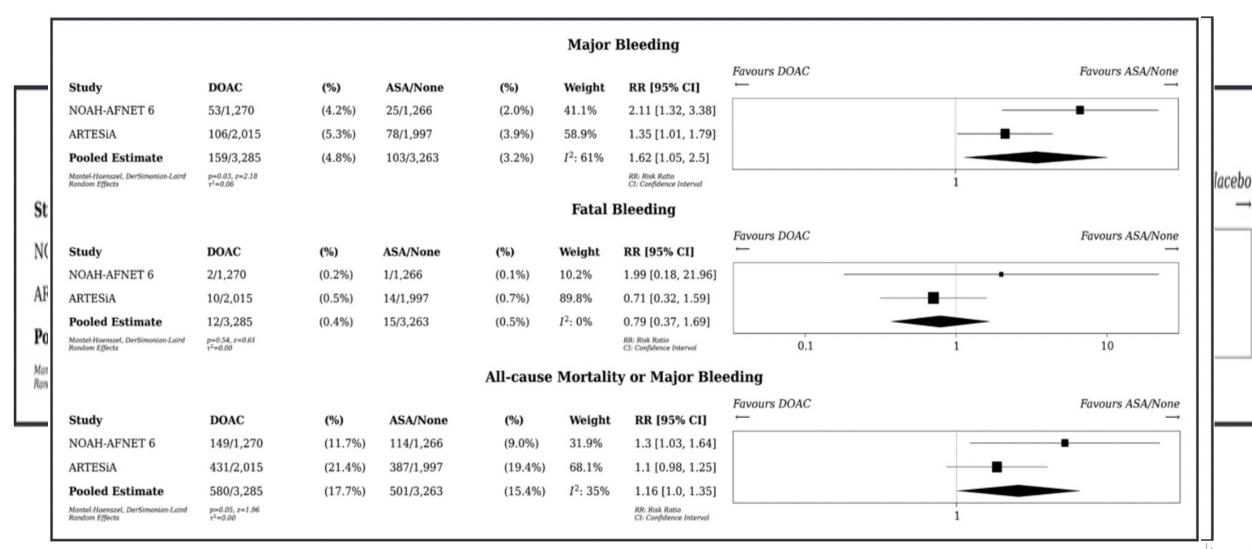
The influence of atrial high-rate episodes on stroke and cardiovascular death: an update

Sensitivity and specificity of various AF screening tools with the 12-lead ECG as the gold standard

	Sensitivity	Specificity
Pulse taking ²⁰³	87 – 97%	70 – 81%
Automated BP monitors	93 – 100%	86 – 92%
Single lead ECG ²⁰⁸⁻²¹¹	94 – 98%	76 – 95%
Smartphone apps 188,189,191,195,212,213	91.5 – 98.5%	91.4 – 100%
Watches 196,198,213,214	97 – 99%	83 – 94%

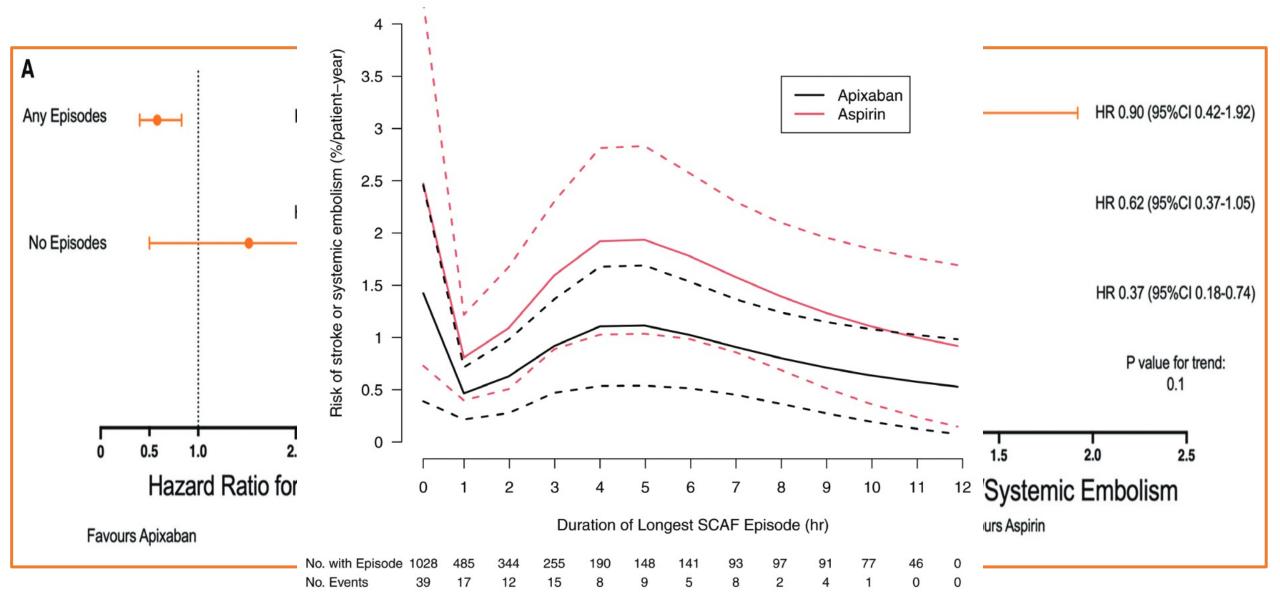
Direct Oral Anticoagulants for Stroke Prevention in Patients With Device-Detected Atrial Fibrillation: A Study-Level Meta-Analysis of the NOAH-AFNET 6 and ARTESiA Trials

Table. Characteristics of Included Studies


	NOAH-AFNET 6	ARTESIA
N	2536	4012
Intervention	Edoxaban	Apixaban
Comparator	ASA or placebo	ASA
Trial registration (ClinicalTrials.gov identifier)	NCT02618577	NCT01938248
Age, y (mean±SD)	77.5±6.7	76.8±7.6
Female sex	37.4%	36.1%
CHA ₂ DS ₂ -VASc score (median, IQR/mean±SD)	4 (3–5)	3.9±1.1
Hypertension	86.9%	81.5%
Diabetes	26.9%	29.1%
Heart failure	27.4%	28.3%
Previous stroke, systemic embolism, or TIA	10.0%	9.0%
Creatinine clearance (mL/min, mean±SD)	66.0±23.4	71.4±28.7
Received reduced-dose DOAC (study drug)	28.7%	9.4%
Received ASA (study drug)	53.9%	100%

	NOAH-AFNET 6	ARTESIA		
Device type				
Pacemaker	81.7%	69.4%		
ICD	7.4%	13.8%		
CRT-ICD or CRT pacemaker	9.9%	11.6%		
ICM	1.0%	5.2%		
Duration of device- detected AF before enroll- ment* (median, IQR)	2.8 h (0.8-9.4)	1.5 h (0.2-5.0)		
Median number of device- detected AF episodes before enrollment	2.8	NR		
Follow-up Median 1.8 y		Mean 3.5±1.8 y		
Incidence of clinical AFt	8.7% per patient-year	6.3% per patient-year		

Direct Oral Anticoagulants for Stroke Prevention in Patients With Device-Detected Atrial Fibrillation: A Study-Level Meta-Analysis of the NOAH-AFNET 6 and ARTESiA Trials



Risk of Stroke or Systemic Embolism According to Baseline Frequency and Duration of Subclinical Atrial Fibrillation: Insights From the ARTESiA Trial

Circulation. 2024;150:1747-1755. DOI: 10.1161/CIRCULATIONAHA.124.069903.

EUROPEAN STROKE JOURNAL

Recurrent stroke in patients with history of stroke/ transient ischemic attack and device-detected atrial fibrillation: a systematic review and meta-analysis

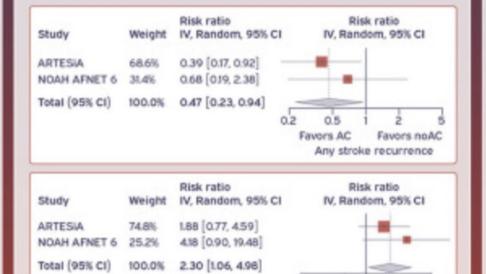
What is the efficacy and safety of anticoagulation in patients with a history of stroke or transient ischemic attack and device-detected atrial fibrillation?

Methods

Systematic review and meta-analysis

2 RCTs

Patients with a history of stroke or TIA and device-detected AF



294 patients receiving AC vs.

305 patients receiving no AC

Results

Conclusion

Anticoagulation in patients with prior stroke or TIA and device-detected AF reduces any stroke recurrence but increases major bleeding risk without raising hemorrhagic stroke incidence.

Abbreviations:

RCT: randomized-controlled clinical trials

TIA: transient ischemic attack

AF: atrial fibrillation AC: anticoagulation

RR: risk ratio

CI: confidence interval

Favors AC

Favors noAC

Major bleeding

- Overall 1% per year
 - Above classic decision-model threshold
- May be modified by:
 - CHA₂DS₂-VASc score
 - Episode duration and frequency
 - Other factors

Treatment Effects of DOAC

(Intention to Treat Populations)

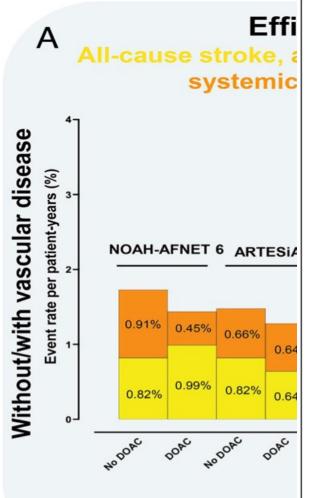
- Reduces stroke by 32% (95% CI 8% to 50%)
- Increases bleeding by 62% (95% CI 5% to 150%)
- No effect on mortality

- Patients have placed higher emphasis on stroke avoidance and less on bleeding avoidance compared to physicians
- Patients may have unique values and preferences

- Roughly half of strokes are fatal or disabling
- Fewer than 15% of bleeds on apixaban are fatal or life-threatening

Atrial Fibrillation Management in 2021: An Updated Comparison of the Current CCS/CHRS, ESC, and AHA/ACC/HRS Guidelines

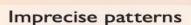
Anticoagulation in Special Circumstances

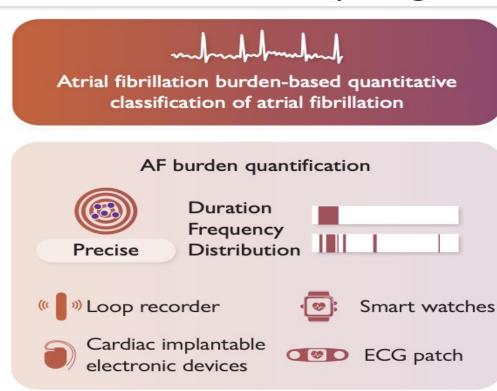

Indication	2020 CCS/CHRS		2020 ESC		2019 AHA/ACC/HRS	
Device-	■ OAC r	easonable in patients ≥65 years or	٠	No specific	•	No specific
detected AF	CHAD	S ₂ score ≥1 with subclinical AF >24 hr		recommendations.		recommendations.
	(Weal	Recommendation).				
Elderly	OACs	hould be prescribed for most frail	•	No specific	•	No specific
	elderl	y patients with AF (Strong		recommendations.		recommendations.
	Recon	nmendation).				


Anticoagulation in patients with low- burden atrial fibrillation: new evidence focussing on device- detected AF

BOX 1 SUMMARY OF THE RECENT EVIDENCE THAT CAN HELP TO ADVISE PATIENTS WITH DEVICE-DETECTED ATRIAL FIBRILLATION (AF) ON THE USE OF ANTICOAGULATION THERAPY

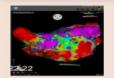
- ⇒ AF burden modulates stroke risk, and lowering AF burden can lower the risk of stroke in patients with AF
- ⇒ The rate of stroke is low without anticoagulation in patients with device-detected AF and clinical stroke risk factors. Based on a combined subanalysis of Non-Vitamin K Antagonist Oral Anticoagulants in Patients with Atrial High Rate Episodes and Apixaban for the Reduction of Thromboembolism in Patients With Device-Detected Subclinical Atrial Fibrillation, patients with device-detected AF without vascular disease are probably best managed without antithrombotic therapy
 ⇒ In patients with device-detected AF and vascular disease,
- ⇒ In patients with device-detected AF and vascular disease, anticoagulation can slightly reduce thromboembolic events with an increased risk of bleeding that may be acceptable in some patients. Shared decision-making, potentially also considering the individual AF burden, seems justified in these patients.


Atrial fibrillation burden: a new outcome predictor and therapeutic target


Becher N, et al. EHJ (2024) 45, 2824-2838

Atrial fibrillation burden: a paradigm shift

- Device-detected
- Paroxysmal
- Persistent
- Long-standing persistent
- Permanent



Interact with

Atrial substrate and cardiovascular comorbidities

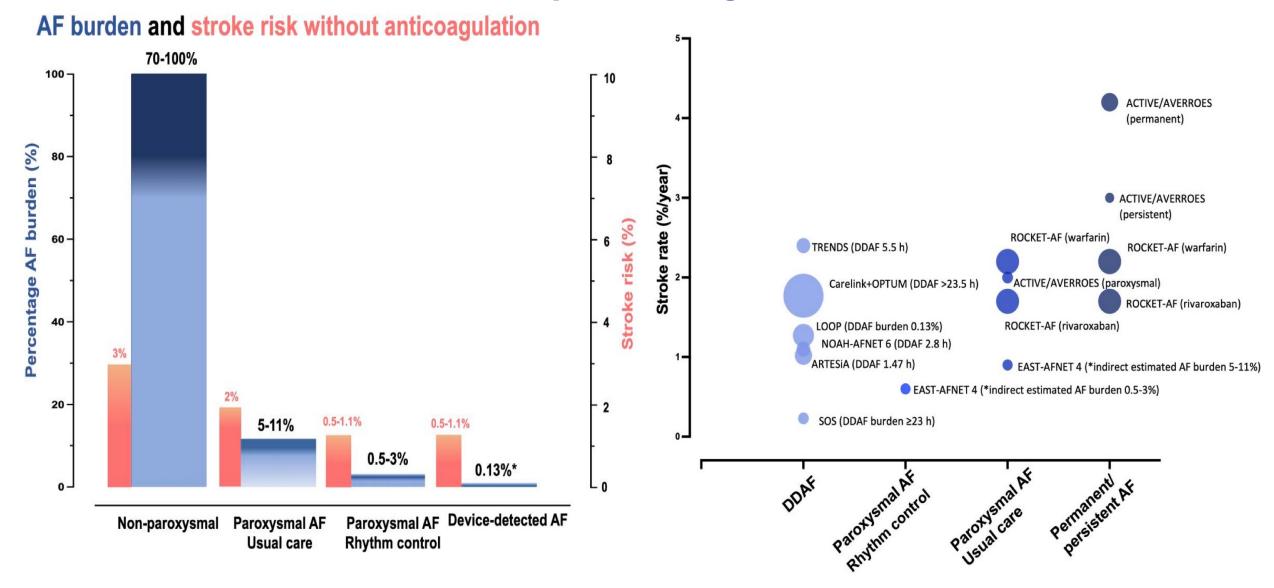
- Atrial cardiomyopathy
- Acute and chronic exposure to stressors
- Age, risk factors, and comorbidities

Refined risk prediction

- Stroke, systemic embolism
- Heart failure
- Hospitalization
- Dementia
- Quality of life

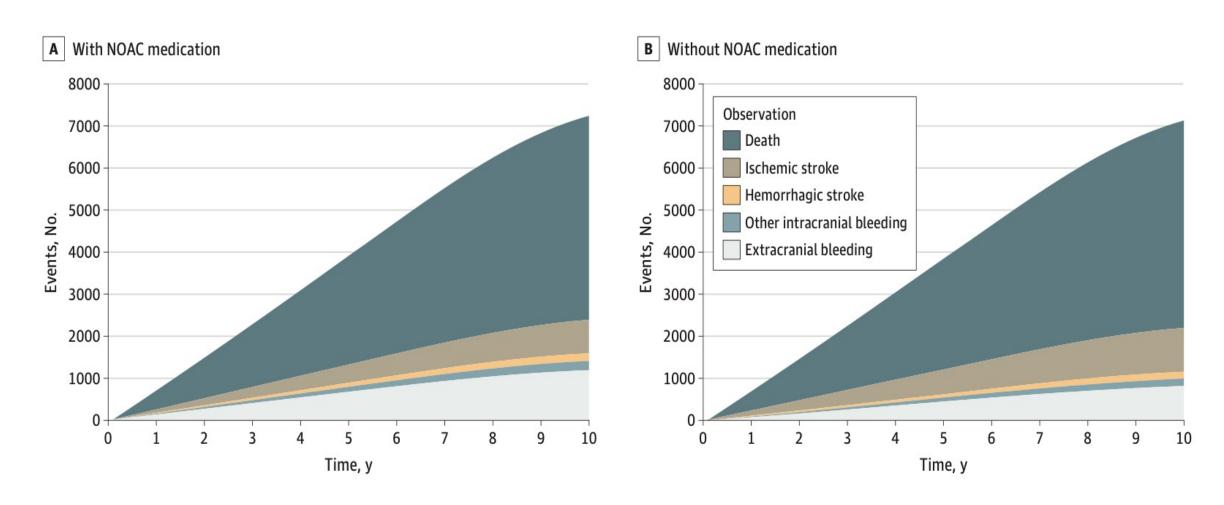
Refined therapy selection

- Rhythm control/ablation
- Antiarrhythmic drugs
- Oral anticoagulation
- Follow-up visits
- Symptom control
- · Quality of life


Refined clinical research

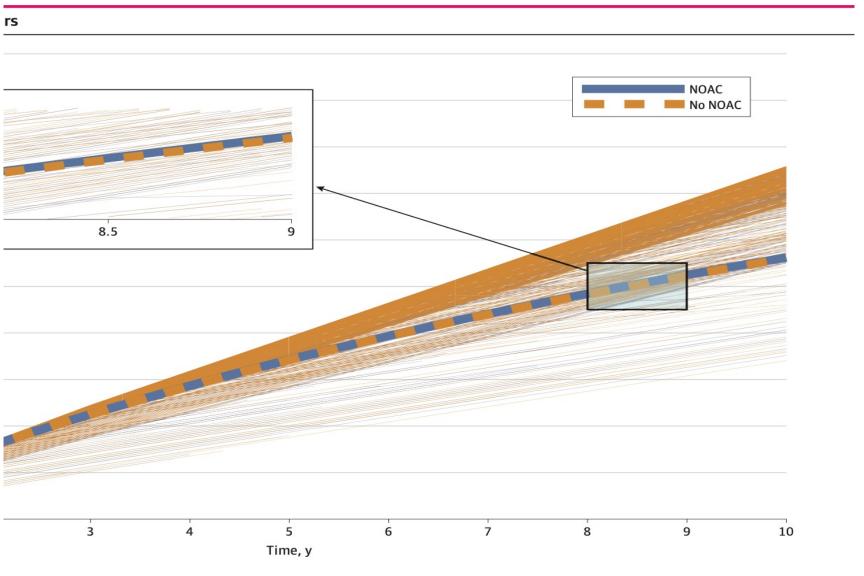
- Enrolment criteria
- · Quantifiable intermediate outcomes

Atrial fibrillation burden: a new outcome predictor and therapeutic target



Incidence of Different Outcome Events During the 10-Year Simulation

Net Benefit of Anticoagulation in Subclinical Device Detected Atrial Fibrillation



Key Points

Question Does anticoagulation provide a net benefit in patients with devicedetected subclinical atrial fibrillation?

Findings In this analytical model study, nonvitamin K antagonist oral anticoagulant (NOAC) therapy in patients with subclinical atrial fibrillation resulted in a net benefit of approximately 1 additional week of quality-adjusted life per patient. When uncertainty in treatment effects was considered, there was only a 66% probability that NOAC treatment would result in more quality-adjusted life than withholding treatment.

Meaning These findings suggest that net benefit of anticoagulation for device-detected subclinical atrial fibrillation is uncertain, and the effect size is not clinically meaningful.

letwork Open. 2025;8(5):e258461. doi:10.1001/jamanetworkopen.2025.8461

Atrial fibrillation detected by cardiac implantable electronic devices

Risk of thromboembolism by CHA2DS2-VA score

0

≥ 1

No anticoagulation

Observe and periodic reasessment of patients risk

Observe and periodic reasessment of patients risk

Observe and periodic reasessment of patients risk

Observe the development

Observe the development of AF or if higher patients risk (≥2) you can initiate the anticoagulation

Initiate the anticoagulation

Short or rare episodes

6 min - 5,5 hours

5,5 hours - 24 hours

>24 hours

Device-Detected AF: OAC, Nothing, or Call a Friend... More Information

Cryptogenic Stroke / ESUS: No Evidence OAC provides any benefit

>5? AF Burden. Overall, no net clinical benefit in general.

➤ DDAF-Wearables/Loop Recorders: More information please!

